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Fig. 1. We introduce a data-driven approach for learning a part mobility model, which enables to predict the motion of parts in a 3D object based only on
a single static snapshot of the object. The learning is based on a training set of mobility units of different motion types, M1, M2, . . ., as in (a). Each unit is
represented by multiple snapshots over its motion sequence, along with associated motion parameters. The part mobility model (b) is composed of the start
and end snapshots of each unit and a static(snapshot)-to-dynamic(unit) (S-D) mapping function learned from training data. Given a query 3D shape, shown at
the bottom of (b), we find the closest mobility unit from the training set via the S-D mapping (b). Aside from motion prediction, the unit also provides a means
to transfer its motion to the query shape, as shown in (c)-left. In (c)-right, we show mobility prediction and transfer on five different parts of a static scooter
model, along with the units found via S-D mapping.

We introduce a method for learning a model for the mobility of parts in 3D
objects. Our method allows not only to understand the dynamic function-
alities of one or more parts in a 3D object, but also to apply the mobility
functions to static 3D models. Specifically, the learned part mobility model
can predict mobilities for parts of a 3D object given in the form of a single
static snapshot reflecting the spatial configuration of the object parts in 3D
space, and transfer the mobility from relevant units in the training data. The
training data consists of a set ofmobility units of different motion types. Each
unit is composed of a pair of 3D object parts (one moving and one reference
part), along with usage examples consisting of a few snapshots capturing
different motion states of the unit. Taking advantage of a linearity character-
istic exhibited by most part motions in everyday objects, and utilizing a set
of part-relation descriptors, we define a mapping from static snapshots to
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dynamic units. This mapping employs a motion-dependent snapshot-to-unit
distance obtained via metric learning. We show that our learning scheme
leads to accurate motion prediction from single static snapshots and allows
proper motion transfer. We also demonstrate other applications such as
motion-driven object detection and motion hierarchy construction.
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1 INTRODUCTION

Recently in the field of shape analysis, increasing efforts have been
devoted to obtaining a functional understanding of 3D objects from
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Fig. 2. Comparing mobility unit prediction by using our part mobility model
obtained with metric learning (“Ours”) to geometry-based retrieval using
the LFD descriptor (left) and to our part mobility model but with uniform
weights in the snapshot-to-unit distance (right).

their geometries and interactions [Hu et al. 2016, 2015; Kim et al.
2014; Pirk et al. 2017; Zhao et al. 2014]. In this setting, the function-
ality of an object is learned by analyzing how humans or virtual
agents may interact with the object and how close-by objects are
related to it geometrically. Typically, such knowledge is acquired
from static snapshots of the object and its surroundings, e.g., a chair
with a human sitting on it, or a table with several objects on top.
In a first attempt, Pirk et al. [2017] describe object functionalities
by capturing and analyzing dynamic object trajectories, e.g., the
motion of a moving agent attempting to sit on a chair. Yet, in all of
these previous works, the central object maintains its rigidity.

In this paper, we are interested in dynamic functionalities of 3D
objects characterized by the movements of one or more object parts,
which we term part mobility. The presence of part mobilities is ubiq-
uitous in our daily lives, e.g., the opening/closing of the drawers
in a chest, or the rotation of the cap of a bottle or the seat of a
swivel chair. One could analyze part mobilities from time-varying
representations of part motions in 3D. However, the acquisition, as
well as distillation and encoding, of dynamic interaction data for
functionality analysis is costly and challenging [Pirk et al. 2017].
The intriguing question is whether it is possible to predict dynamic
part mobilities from only a single static snapshot of the spatial con-
figuration of object parts in 3D space. Perhaps even more intriguing
would be the prospect of executing proper part motions on a given
static 3D model. Under these settings, part mobility analysis would
involve not only recognizing the type of motion that an object part
can undergo, but also inferring appropriate motion parameters to
enable the execution of motions.

Without any prior knowledge, the part mobility analysis problem
may very well be ill-posed. However, in our daily lives, we, humans,
apply motion inferences all the time. In general, we can predict the
functionality of unseen objects by prior experiences or knowledge
on similar objects. In the same spirit, our work shows that it is
possible to infer part mobilities of a static 3D object by analyzing
and learning from motion sequences of parts from the same and
different classes of objects.

This problem is challenging not only because a mapping from static
to dynamic is inevitably under-constrained, but also due to the

large geometric diversity of 3D shapes which may support a similar
motion. As shown in Figure 1(c), while the handles of the faucet
and drawer both involve rotations, the rotations are of different
motion types. Geometrically, doors, wheels, and handles could all
come in different shapes and sizes. Even the same motion type can
be parameterized differently based on different geometries and part
configurations. Simply searching for geometric similarity between
individual snapshots of the dynamic movements means that we
need to store examples of all possible motion types, and in all spatial
and temporal configurations for each type, which is impractical.

We introduce the idea of learning a specific metric for each motion
type, which enables a mapping from a given static query snapshot
to the closest dynamicmobility unit in the training set. The training
data consists of a set of mobility units classified by motion types
such as wheel rotation, drawer sliding, etc., where each mobility
unit is composed of a pair of parts of a 3D object (a moving part,
and a part that serves as reference to the motion), along with usage
examples consisting of few, typically 2-4, snapshots capturing the
geometry configuration in different motion states of the unit. We
develop a data-driven approach to learn the static-to-dynamic or
S-D mapping and our part mobility model; see Figure 1. With the
learned snapshot-to-unit distance, the mapped unit from the query
static snapshot not only exemplifies the motion type, e.g., formotion
prediction, but also comes with the necessary motion parameters to
allow motion transfer from the dynamic unit to a static 3D object.

We observe that many part mobilities afforded by everyday objects
exhibit some form of linearity, but in different spaces. For example,
drawers undergo linear translations in the spatial domain, while
rotations about a hinge are linear in angle space. Linearity makes
it possible to characterize and learn part mobilities from few static
snapshots. In the “correct” space which reflects the linearity of a
motion type, the sum of distances from any intermediate snapshot
of a linear motion, to the start and end snapshots of the motion,
by means of linearity, would remain approximately invariant. Thus
we can characterize a motion type by the sum of distances to the
appropriate start and end states and rely on these distance sums for
motion prediction. The remaining challenge however is that we do
not know the correct space within which to measure distances.

With the motion types exhibiting much diversity in their tempo-
ral and geometric characteristics, we resort to machine learning,
and specifically metric learning, to approximate the correct spaces
for measuring distances. The S-D mapping requires measuring dis-
tances from a query snapshot of a 3D object to mobility units of
other objects. We define the snapshot-to-unit distance as the sum
of distances from the query snapshot to the start and end snapshots
of target units. Under the linearity assumption, this sum should
be invariant for snapshots within the unit. Moreover, this sum for
snapshots with the same type of motion should be smaller than
the sum for snapshots with other types of motion. Thus, the prob-
lem of defining a snapshot-to-unit distance is reduced to defining
a meaningful distance between snapshots based on our chosen set
of descriptors. However, if we simply apply uniform weighting of
the descriptors for all motion types, we would obtain unsatisfactory
prediction results, as shown in Figure 2 (right). On the other hand,
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using different descriptor weights learned from data, we can define
a distance that approximates the correct motion space. Indeed, our
metric learning allows us to define a motion-dependent distance for
each motion type.

We show that our learning scheme is able to predict dynamic part
mobilities from single static snapshots with high accuracy and the
predicted dynamic units provide information on the motion parame-
ters to allow effectivemotion transfer; see Figure 1(c). Our prediction
model also enables other applications, such as motion-driven object
detection in 3D scenes, as well as understanding the mobility of an
entire object, forming a motion hierarchy of the object parts. Such
a motion hierarchy can be used either to generate animations of
objects, or to create static scenes with objects in different motion
states.

2 RELATED WORK

Object functionality from static snapshots or agents. In comparison
to previous works on functionality analysis, the interactions we
consider are dynamic (the mobility of parts) and are not limited
to those involving human agents. For example, affordance-based
methods simulate a human agent to predict the functionality of
objects [Grabner et al. 2011; Kim et al. 2014], or to recognize the re-
gions of a scene to enable a human to perform certain actions [Savva
et al. 2014, 2016]. Thus, although some of these methods involve the
dynamics of human interactions, they do not extend to more general
types of object affordances. The interaction context descriptor [Hu
et al. 2015] and functionality models learned for categories [Hu et al.
2016] consider more general object-object interactions. However,
these object-object interactions are static in nature. In contrast, we
analyze the part-part interactions for part mobility prediction.

Object functionality from dynamic interactions. The recent work of
Pirk et al. [2017] performs functionality inference from dynamic
interaction data. The key difference to our work is that they char-
acterize functionalities of static objects by analyzing dynamic in-
teractions, e.g., how a cup can be used in the dynamic action of
drinking coffee. Similarly, Hermans et al. [2013] introduce an ap-
proach to learn the dynamic interactions that a robot can perform
with rigid objects, in the form of pushing an object to displace or
rotate the object. However, the analyzed objects in these approaches
are not dynamic themselves. As a consequence, their analyses are
performed at the object level, and not at the part level as in our
work. Moreover, dynamic interaction data is not only difficult to
acquire and process, but may also be unavailable altogether.

Another line of works in the literature target the capture of dynamic
interactions. Kry and Dinesh [2006] propose a method to acquire
the details of hand interactions. Their work focuses on the use of
specialized hardware for acquiring the interactions, and does not
leverage the motion information to represent the functionality of
objects. Recent works in computer vision aim at capturing the func-
tionality of tools [Zhu et al. 2015] or representing general human
interactions [Wei et al. 2017]. However, the focus of these works
has been on recognition — the derived functionality representations
are not intended for grouping or transferring part mobility.

Motion inference from geometry. In earlier work along this direction,
Gelfand and Guibas [2004] infer slippagemotions from the geometry
of shapes. Although the method is applied to shape segmentation
rather than motion analysis, the slippage analysis discovers sliding
motions that kinematic objects can undertake. In subsequent work,
Xu et al. [2009] employ slippage analysis to discover joints in artic-
ulated models. Moreover, Mitra et al. [2010] analyze mechanisms to
infer their motion. They predict the possible motion of mechanical
parts from their geometry and spatial configuration, and use the
result of the analysis to illustrate the motion of mechanical assem-
blies. Guo et al. [2013] follow a similar approach to illustrate the
disassembly of 3D models, while Shao et al. [2013] create animated
diagrams from a few concept sketches. Although these methods can
be used to automatically discover the mobility of parts, we remark
that most of the 3D shapes available in online repositories are not
modeled with all the mechanical parts needed to infer their mo-
tion. Similarly, the animation of sketches requires user assistance
to provide the missing motion information.

Part mobility from indoor scenes. Sharf et al. [2013] build a mobility
tree to summarize the support relations between objects or parts in
a scene, and their relative mobility. First, the input scene is searched
for repeated instances of objects. Next, given a repeated model
detected in distinct configurations, the method discovers possible
motions the model can undergo. One limitation of this approach
is that it relies on the occurrence of repeated models in the input
scene, appearing in different states of motion, e.g., open and closed
drawers. Thus, the detected mobility cannot be easily transferred
to objects that do not appear in the scene, since the motion is dis-
covered separately for each instance. In contrast, we learn a model
that groups together similar types of motion coming from different
objects, and can then be used to transfer the motion to new objects,
which do not necessarily have the same geometry as the analyzed
models.

Mobility fitting from motion sequences. Li et al. [2016] capture the
part mobility of an articulated object by searching for a set of joints
that determine the motion. Bypassing geometry reconstruction of
the model, they directly solve an optimization to find the joints and
motion parameters. On the other hand, Pero et al. [2016] identify
parts that move together in video sequences to extract articulated
object parts, while Stückler et al. [2015] use random forest classifiers
and expectation-maximization to identify rigid parts. In comparison
to our work, these approaches are restricted to articulated models,
and require dynamic data in the form of a scan or video sequence.

Tevs et al. [2012] present a method for reconstructing dynamic
shapes which enables the acquisition of more general motions than
just articulated parts. Their input is also required to be a scan se-
quence with a considerable number of intermediate snapshots. In
recent work, Xue et al. [2016] synthesize future frames from single
input images using a cross convolutional network. However, their
method requires a considerable amount of dynamic data for training,
in the order of tens of thousands of image pairs, and the training of a
deep neural network. In contrast, our method requires the learning
of the S-D mapping, which can be accomplished with significantly
less data.
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Fig. 3. Training data setup: given a segmented shape, shown on the top-left,
we define several mobility units by pairing the parts into (moving, reference)
pairs, as shown on the top row. The bottom row shows several snapshots of
the motion of the highlighted unit.

3 TRAINING DATA SETUP

The input to the training is a set of shapes in upright orientation
and with parts segmented into separate geometries. The parts are
grouped intomobility units, where each unit is composed of amoving
part and a reference part, e.g., a drawer that moves and the furniture
frame that serves as a reference for the motion. The complete input
consists of a few static configurations of each mobility unit, which
we call snapshots. The snapshots are given at different states of the
motion, e.g., drawer fully-open, drawer half-open, etc. An example
of the input is shown in Figure 3. We ensure that the start and end
snapshots of each unit are included, and order all snapshots in a
unit according to the chronological motion of the parts.

Each unit in our dataset is associated with a set of motion parameters
represented as a quadruple (t , a, p, r), where t is the transformation
type, a and p are the direction and position of the motion axis, and
r is the transformation range, stored as a start and end position (for
translations) or angle (for rotations) relative to the center of mass
of the moving part and the upright axis.

The units can then be roughly classified into 8 different motion
types, according to the first three parameters. The classification is
based on labeling the units according to their transformation type
(translation, rotation, or both, denoted as T, R, and TR), the general
direction of the translation or rotation axes (horizontal or vertical,
denoted as H and V), and the location of the axes (close to the center
of the units or to one of their sides, denoted as C or S). Note that
the transformation range parameter, which is determined by the
start and end snapshots, is not used for the motion classification
since it is more related to the semantics of the given object, while
our classification is mainly intended for facilitating the learning of
a motion-dependent distance measure. We show one example unit
for each motion type in Figure 4. We provide this classification as
an initial grouping to our method, and also use the motion type and
the associated motion parameters as ground-truths to evaluate the
results of motion prediction and transfer, respectively, in a cross-
validation scheme.

R_H_C

R_V_C R_V_S T_V TR_V

TR_HT_HR_H_S

Fig. 4. Classification of the training units into motion types. We show one
example unit for each motion type. See text for labels.

4 METRIC LEARNING

The key to enable the S-D mapping is to learn a distance between
a snapshot and a unit. To ensure accurate motion prediction for
unseen snapshots, we learn a separate distance for each motion
type. In the following, we first detail the different distance measures
we use in our method, and then describe the metric learning.

Snapshot descriptors. We use a set of descriptors to represent the
configuration of the moving and reference parts appearing in a
snapshot. First, we capture the interaction between the two parts
with the interaction bisector surface or IBS [Zhao et al. 2014]. The
IBS is a subset of the Voronoi diagram computed between the two
objects, which captures the spatial region where the objects interact
with each other. Moreover, as the geometry of the parts themselves is
relevant to their motion, we also capture the regions on the surfaces
of the objects that correspond to their IBS, called the interaction
regions or IRs [Hu et al. 2015]. We represent the IBS and IR with the
same descriptors as in Hu et al. [2015]. We also represent the relative
configuration of the parts with the RAID descriptor [Guerrero et al.
2016], which captures inter-region relations based on the spatial
distribution of point-to-region relationships. The descriptors used
to encode IBS and IR and the details on how we adapted RAID to
our setting can be found in supplementary material.

Distance measures. We will define three distance measures that are
used by our mobility model.

Snapshot-to-snapshot distance. The distance between two snapshots
is a weighted combination of N individual descriptor distances:

DS
W (si , sj ) =

N∑

f =1
wf D

S
f (si , sj ), (1)

where DS
f (si , sj ) is the distance between snapshots si and sj for

the f -th descriptor, normalized to the range [0, 1],wf ∈W lies in
the range [0, 1] and is the weight for descriptor f , and ∑f wf = 1.
Since the sum of weights is one, DS

W is also in the range [0, 1]. Note
that this distance depends on the chosen weightsW . If we choose
different weights, we can obtain different distance measures as will
be described below.

Snapshot-to-unit distance. This measure compares a snapshot to
a unit by combining our linearity assumption with the snapshot
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(a) Type 1 constraints (b) Type 2 constraints

Fig. 5. Metric learning constraints: (a) Type 1 between a snapshot and two
units: DSU (sj , ui ) < DSU (sj , uk ); (b) Type 2 between two snapshots and
a unit: DSU (sj , ui ) < DSU (sk , ui ). Different snapshot colors indicate
different motion types. The distances indicated with green lines should be
smaller than the distances of orange lines.

distance defined above:

DSU (s,uj ) =
1
2

(
DS
Wj

(s, s
j
1) + D

S
Wj

(s, s
j
m )
)
, (2)

where s is an arbitrary snapshot, s j1 and s
j
m are the start and end

snapshots of unit uj , respectively, andm is the number of snapshots
used to represent each unit. The snapshot-to-unit distance is the
main tool used in the S-D mapping, where we compute the distances
of a snapshot to the units in the training data, and select the unit
closest to the snapshot. Note that we use the weightsWj learned for
the unit uj when invoking the snapshot-to-snapshot distance DS ,
since we do not necessarily know the source unit of the snapshot s ,
especially if s is a query during motion prediction.

Unit-to-unit distance.We also define a distance between two units,
which is used to cluster similar types of units as explained below:

DU (ui ,uj ) =
1
m

∑

s ik ∈ui

DSU (sik ,uj ). (3)

This distance is asymmetric since it considers the snapshots of unit
ui and the weightsWj learned for the unit uj when invoking DSU .

Metric learning. The goal of this step is to learn a different set of
weights for each motion type, as each type of motion may be better
described by different descriptors. The weightsW for the snapshot
distance DS are learned from a set of constraints derived from the
snapshots in the training data and their specified motion types.
While learning the weights, we take into account the effect that the
weights have when comparing snapshots to units with DSU . Thus,
the constraints used in the learning ensure that units and snapshots
with the same type of motion are kept closer to each other than to
units or snapshots with a different type of motion. We achieve this
with two types of constraints.

Suppose that we have three different mobility units ui , uj and uk ,
where any of their snapshots can be denoted as si , sj and sk , respec-
tively. Let us assume that units ui and uj belong to the same motion
class, while unit uk is from another class. The Type 1 constraints
(illustrated in Figure 5(a)) capture the notion that snapshots (e.g.,
sj ) should be kept closer to units with the same type of motion as
themselves (e.g., ui ), rather than to units with a different type of
motion (e.g., uk ). Therefore, we derive a constraint on comparing
one snapshot to two different units: DSU (sj ,ui ) < DSU (sj ,uk ).

Fig. 6. Selected clusters of motion type R_H_C, one per cell, obtained by
performing affinity propagation clustering according to our unit distance
measure. Note how the units in a cluster have similar local geometry and
part interactions.

Type 2 constraints (illustrated in Figure 5(b)) capture the notion
that the distance from snapshots to units of the same motion type
should be smaller than the distance from snapshots to units of a
different type. Therefore, we derive a constraint on comparing two
snapshots to the same unit: DSU (sj ,ui ) < DSU (sk ,ui ).

For realizing the S-D mapping, it is sufficient to perform the met-
ric learning only with Type 1 constraints, as they ensure that the
nearest neighbor unit provided by the snapshot-to-unit distance
is meaningful. However, as we demonstrate in Section 7, there are
applications that benefit from Type 2 constraints, as they require
the distance from different snapshots to a unit to be comparable.

Clustering of units. If the training data is large, the number of derived
constraints may be prohibitive for learning the distance in practice.
Thus, we systematically subsample a tractable number of constraints.
To subsample, we first cluster each input motion type into smaller
groups of similar units (see Figure 6 for examples). This allows us
to reduce the number of constraints by defining constraints only
in terms of clusters, where the number of clusters is significantly
lower than the number of units. Each cluster is composed of finer
variations of the same type of motion.

We estimate the similarity between units with the unit distance
measure defined in Eq. 3, which considers the motion and geometry
of the part interactions of the units, while assuming equal weights
for all descriptors. As we will see in Section 6, equal weights do
not provide the best indication of motion similarity, but lead to a
reasonable clustering of units. We perform the clustering with the
affinity propagation method [Frey and Dueck 2007]. The advantage
of this method is that it does not depend on a good initial guess
to yield reasonable clustering results, and it automatically selects
the number of clusters based on the distance between units and
an estimate of how likely each unit is a cluster center. We set this
estimate for a unit as the median distance from the unit to all other
units in the set. The output of this process is a clustering of mobility
units for each motion type, and a unit selected as the center of each
cluster, which are then used for defining the constraints.

Constraint subsampling. To define the constraints that involve snap-
shots sj of any unit uj in our dataset, we choose ui to be the center
of uj ’s cluster, and take uk to be the center of one of the clusters of
a different motion type; see illustration in Figure 7. Since we use
the nearest neighbor to define the S-D mapping, it is sufficient to
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Fig. 7. Subsampling the constraints using finer clustering of motion types.
Each motion type is drawn in a different color and shown in a dashed square,
while the clusters of units in a motion type are the colored circles, where the
centers are marked by crosses. The only constraints we use for snapshots
of a given unit uj involve the unit’s cluster center ui and cluster centers of
other motion types (e.g., uk ).

ensure that any snapshot is close to its cluster center. Thus, we do
not use additional constraints between snapshots and other cluster
centers within the same motion type. This subsampling reduces the
total number of constraints significantly.

Optimization. We use the constraints defined above to learn the dis-
tance with a method similar to that of Schultz and Joachims [2003],
where the main difference is that we constrain the sum of weights
with respect to each motion to be one.

More details on the constraint subsampling and optimization are
given in the supplementary material.

Algorithm 1 MotionTransfer (q,u,n, l ) → (t , a, p, r)
Input: query snapshot q, top retrieved unit u , maximum iteration number

n, initial sample step size l
Output: motion parameters (t, a, p, r) of q
1: M ← GenerateCandidateParams(q, u )
2: bestDist← ∞, bestM← ∅
3: foundSample← false, iterNum← 1, checkValidity← true
4: while foundSample = false do
5: if iterNum = n then
6: checkValidity← false
7: end if
8: for eachm ∈ M do
9: S ← SampleMotion(q,m, l, checkValidity)
10: if S � ∅ then
11: foundSample← true
12: end if
13: for each s ∈ S do
14: d ← DSU (s, u ) /* snapshot-to-unit distance */
15: if d < bestDist then
16: bestDist← d
17: bestM←m
18: end if
19: end for
20: end for
21: l ← l/2
22: iterNum← iterNum + 1
23: end while
24: return bestM

5 MOTION PREDICTION AND TRANSFER

To perform the motion prediction, given a query snapshot q from
an unknown unit, we use the snapshot-to-unit distance defined in
Eq. 2 to compare the query to the units in the training data, and
select the unit u that is the most similar to q. After that, we can
transfer the motion from u to the parts of the query q. The goal is
to find a set of motion parameters for q, such that the motion of q is
consistent with the parameters of u, but is adapted to the geometry
of q’s parts. Note that the motion parameters of training units are
not used during the prediction, but for motion transfer only.

Motion transfer overview. The general idea of the motion transfer
procedure is to generate candidate motion parameters for q, and
select the candidate parameters that provide the best fit with the
motion of u. More specifically, we sample candidate parameters for
q according to the motion parameters of u. To verify the quality
of the fit, we generate additional snapshots for q using the motion
defined by the candidate parameters, and compute the distances
from the new snapshots to the unit u, according to the snapshot-
to-unit distance. Finally, we select the parameter set that generated
the snapshot with the smallest distance, and use it to define the
motion on q. An overview of the motion transfer is presented in
Algorithm 1. The steps of the method are explained in more detail
as follows.

Candidate motion parameters. To generate the candidate sets of
motion parameters for q, we determine the four motion parameters
one by one. First of all, the transformation type of all the candidates
should be exactly the same as the transformation type of u.

For the candidate axis, we observe that most man-made objects
possess some kind of symmetry and the transformation axis direc-
tion and position of the movable parts are usually highly related
to the symmetry. Thus, we first compute the symmetry-aligned
oriented bounding box (OBB) of the moving part in q, with the OBB
computation of Fish et al. [2014]. Then, based on the axis direction
label of u, which is either “horizontal” or “vertical”, each edge of the
OBB which follows the prescribed direction provides a candidate
direction for the translation or rotation axis. We assume that the
input shapes are upright-oriented, thus an edge direction can be
easily classified as vertical or horizontal by computing the angle
between the edge direction and the upright direction.

For each candidate axis direction, we further sample multiple candi-
date positions based on the axis position label of u. For “side” axes,
we take all the edges of the OBB that are parallel to the candidate
direction and use the edge centers to determine the position of the
axis. For “central” axes, we select two points to generate two candi-
date axes passing through those points. One point is the center of
the OBB, while the other is the weighted center of the interaction
region (IR) on the moving part, computed according to the weights
of points on the shape that indicate the likelihood of the points be-
longing to the IR [Hu et al. 2015]. One candidate selection example
is illustrated in Figure 8.

For the transformation range, since the shapes are not aligned, we
cannot directly transfer the motion range from u to q. Thus, we
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Fig. 8. Motion transfer: we sample different candidates for the motion axis
of a query snapshot, based on the OBB and the IR of the moving part in
the snapshot. We then select the best candidate as the motion axis of the
query shape.

transfer the extent of the range temporarily, and determine the exact
motion range for q during motion sampling, as explained below. In
the case of rotations, we transfer the rotation angle extent, defined
as the difference between the start and end angles. This strategy
does not apply to translations, since translation depends on the scale
of the shapes, which can differ among units. Thus, for translations,
we define the extent as the length of the translation vector from the
start and end positions of the motion. Then, we compute the ratio
between the extent and the projection length of the moving part
along the motion axis of u. Finally, the extent for q should be the
projection length of its moving part along the candidate axis, scaled
by the ratio.

Motion sampling and selection. To generate additional snapshots for
q using a candidate axis, we treat q as the center of the motion and
extend the motion to each “side” of q according to the motion axis
and transformation type. That is, we either translate the moving
part along the two possible directions of a translation axis starting
from q, or rotate the part around a rotation axis at q into the two
rotational directions. The motion range of q is determined from how
far the expansion went; see Figure 9.

During the expansion from q, we sample the geometry to create
additional snapshots and check if the newly sampled snapshots are
valid or not. Specifically, we start with a sample interval distance
l , and create a new motion snapshot a distance l away from q to
each side of q. The snapshot is created by either translating the
moving part l units along the translation axis and sampling direction,
or by rotating the moving part an angle of l degrees around the
rotation axis. Next, if a snapshot is valid, we attempt to continue
the expansion along its side. We stop when no further expansion
can be done.

If no valid snapshots were found for any of the candidate axes,
we divide the step size l by half to sample a finer set of motion
snapshots. In this way, we adaptively adjust the step size to find
valid motions, while preferring large motions first. The initial l is
set as 0.4 times the motion range extent of u. If after the maximum
number of iterations n = 3 of adaptive sampling we still cannot find
any valid snapshot for all the candidates, we disable the validity
checking and sample two snapshots for each candidate axis on both
sides of q.

A snapshot is valid if the moving part remains connected to the ref-
erence part during the motion, but without significant intersection

Fig. 9. Examples of motion ranges estimated for test snapshots with differ-
ent motion types. We show the start and end snapshots of the estimated
motion (drawn with transparency) for the given snapshot (drawn in solid
color).

between the parts. In more detail, a snapshot is valid in two cases: (i)
If the two parts collide, most of the intersection should be confined
to the IR of the reference part, since it is expected that collisions
can happen in this region. (ii) If there is no collision, the moving
and reference parts should remain as close as possible. The closest
distance between the moving and reference parts in the query snap-
shot provides a reasonable threshold for this closeness constraint. In
our implementation, a sampled snapshot is valid as long as the two
parts are not further apart than twice this threshold. If the threshold
is zero, the parts should remain connected during the motion.

6 RESULTS AND EVALUATION

In this section, we demonstrate the use of our part mobility model
for motion prediction and transfer, and evaluate different aspects
of the learned part mobility model. We show additional example
applications of our model in the next section.

Dataset. We evaluate our method on a set of 368 mobility units with
diverse types of motion encountered in our daily lives. As described
in Section 3, we use the classification of the units into motion types
(Figure 4) and their motion parameters as a ground-truth to perform
a quantitative evaluation. The full dataset and the classification of
units into motion types are shown in the supplementary material.

Dataset preparation. We collected the shapes in our dataset mostly
from the ShapeNetCore repository, and complemented this sample
with shapes from other repositories like SketchUp, to ensure that
the dataset contains a variety of motions. Then, we manually seg-
mented the shapes into parts. To further complement the shapes
with motion information, we implemented a tool to manually add
motion parameters to shape parts, so that motion sequences can be
generated automatically from the parameters. A non-expert user
can employ the tool to select a unit from a segmented shape and
manually specify the motion parameters. The construction of our
dataset took about 5 hours with this tool, with less than 1 minute
per shape on average.

By sampling snapshots from the motion sequences, we create the
sparse set of two snapshots used for training, and denser sets of snap-
shots used as ground-truth in the evaluation. Note that, although
our dataset would allow us to also train a model with a denser set
of samples, using a sparse set of samples can provide comparable
results as we explore in Section 3 of the supplementary material.
Moreover, there are many sources of data for which performing

ACM Transactions on Graphics, Vol. 36, No. 6, Article 227. Publication date: November 2017.



227:8 • R. Hu, W. Li, O. van Kaick, A. Shamir, H. Zhang and H. Huang

snapshot-to-unit direction unit-to-snapshot direction
0.6

0.65

0.7

0.75

0.8
LFD
Snapshot
Uniform
Our Type 1
Our Type 2
Our both

Fig. 10. Ranking consistency for different snapshot-to-unit distances. Please
refer to the text for details.

such manual motion assignment would be prohibitive, e.g., for pro-
cessing large-scale datasets or 3D scans which are not as clean and
easy to manipulate as our models. In these more difficult scenarios,
using our method is beneficial for reducing the amount of manual
effort required to collect the motion sequences.

Snapshot-to-unit distance measure. As the key contribution of our
paper is a new snapshot-to-unit distance which enables the map-
ping between the static and dynamic domains, we first evaluate
the overall performance of the distance measure we learned. We
perform a 10-fold cross validation experiment, that is, we divide the
units in the training data into 10 folds of equal size and evaluate
the distance measure when taking each fold as the test set while
training on the other nine folds. For this and the subsequent ex-
periments, we use four snapshots per unit for training, and nine
snapshots per unit for testing. We evaluate the distance measure
in two directions, i.e., snapshot-to-unit and unit-to-snapshot direc-
tions. For the snapshot-to-unit direction, given a test snapshot, we
rank all the training units according to their distance to the given
snapshot and then verify whether the units with same motion type
are consistently ranked before units with other motion types. For
the unit-to-snapshot direction, given a training unit, we rank all the
test snapshots according to the distance measure, and evaluate the
ranking.

We evaluate the quality of the ranking with the ranking consistency
(RC)measure [Hu et al. 2016].We take the snapshot-to-unit direction
as an example to explain the computation of the RC measure, while
the unit-to-snapshot direction can be derived in a similar manner.
The RC evaluates in a quantitativemanner howwell a set of retrieved
items is ordered according to ground-truth labels, by comparing the
relative ordering between pairs of items. We define the RC for a test
snapshot s as:

RC(s ) =
∑
ui ∈I

∑
uj ∈O

C (DSU (s,ui ),D
SU (s,uj ))

/
|I | |O|, (4)

where C (di ,dj ) =

{
1, if di < dj ,
0, otherwise, (5)

with I being the set of training units with the same motion type as
s , and O the set of training units with different motion types. The
RC ranges in [0, 1] and captures the global quality of the ranking
according to the ground-truth. Note that the RC tests whether posi-
tives are ranked higher than negatives and thus is equivalent to the
area under the receiver operating characteristic (ROC) curve [Steck
2007].
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Fig. 11. Motion prediction accuracy for our method when using different
sets of weights. We also include a comparison to a baseline method (LFD).
See the text for details.

We compute the average RC for test snapshots and report it as
the graph on the left of Figure 10, while the result for the unit-to-
snapshot direction is shown on the right. In this evaluation, we
study the effect that using different types of weights and metric
learning constraints have on the model. The bar labeled Uniform
denotes the accuracy of motion prediction when using a set of equal
descriptor weights for the snapshot distance. Our Type 1 and Our
Type 2 denote the cases when only Type 1 or Type 2 constraints are
used, and finally Our both denotes the use of both constraints for
the metric learning. We note that the RC is best preserved when
both constraints are included in the optimization (Our both).

Comparison to a baseline method. To further evaluate our distance
measure, we compare it to other distance choices. First, we com-
pare to a baseline that uses only the geometry of shape parts for
prediction. Specifically, we use the light field descriptor (LFD) to
compute the distance between two snapshots, which is taken as
the sum of the LFD descriptor distances between the moving and
reference parts of the two snapshots. Since all the snapshots of a
unit have the same moving and reference parts, it is sufficient to use
one snapshot as representative of each unit. Then, we match a query
snapshot to the unit in the training set with the lowest distance to
its representative snapshot, and assign the motion of the unit to the
query snapshot. The result is shown in Figure 10 and denoted LFD.

Metric learning applied to the snapshot-to-snapshot distance. To show
the effectiveness of our linear assumption on the S-D mapping,
we also evaluate the scenario where we apply the metric learn-
ing directly to the snapshot-to-snapshot distance, instead of the
snapshot-to-unit distance. We then derive a snapshot-to-unit dis-
tance by exhaustively computing the distance from the query to
each snapshot of a unit with the optimized snapshot-to-snapshot dis-
tance, and picking the unit corresponding to the snapshot with the
minimum distance. The result is denoted as Snapshot in Figure 10.

Discussion. From these comparisons, we conclude that our part mo-
bility model takes into consideration not only the geometry of the
parts, but also the correct motion that the parts can possess. Thus,
our method provides more accurate results when compared to the
LFD baseline that only considers the geometry of parts. With the
linearity assumption that simplifies the distance measure between
a snapshot and a unit, our method not only saves time during train-
ing and when computing the distance measure, but also provides
better performance than when the snapshot-to-snapshot distance is
optimized directly, since only very few snapshots are sampled for
each training unit. Finally, when using different types of weights
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Table 1. Size (in number of units) and average prediction accuracy for all
motion types.

Motion type R_H_C R_H_S T_H TR_H

Cluster size 85 71 54 28
Prediction accuracy 0.98 0.91 0.95 0.98

Motion type R_V_C R_V_S T_V TR_V

Cluster size 21 29 16 64
Prediction accuracy 0.90 0.96 0.86 0.98

Fig. 12. Failure cases for motion prediction. Each example is the query
snapshot on the left and the predicted unit to the right. As can be seen, a
wrong type of motion is inferred.

and metric learning constraints, we observe that the metric learning
has a benefit in the prediction accuracy when compared to uniform
weights. The best prediction accuracy is obtained when both types
of constraints are incorporated into the learning.

Motion prediction. Since our main focus is to use S-D mapping for
motion prediction and transfer, we specifically evaluate the motion
prediction accuracy of the top retrieved unit for a test snapshot,
which is the most relevant for motion prediction. We perform the
same 10-fold cross validation experiment described above and verify
the accuracy of motion prediction for all the test snapshots in a fold.
The accuracy is evaluated according to the ground-truth labels,
and we report the average accuracy for the ten tested folds. The
comparison results with different distance measures are shown in
Figure 11.We see that the best prediction accuracy of 0.95 is obtained
when either constraints of Type 1 or both types of constraints are
satisfied. Using only the snapshot-to-snapshot distance or uniform
weights provides a slightly lower accuracy (0.91), while LFD has
the lowest accuracy (0.83). Figure 2 shows a few visual examples of
units predicted by our model, in comparison to other options.

Table 1 shows the size and prediction accuracy for each motion class
in our dataset. We observe that the accuracy for all motion types
is above 0.86. The lowest accuracies appear in the classes R_H_S,
R_V_C and T_V, where T_V has the smallest set of training data,
which makes the prediction unstable compared to other motion
types. Figure 12 presents a few examples of incorrect predictions
for these classes. We see how the geometry and interaction of parts
in the query and unit are similar, although the motion supported
by the parts is different. We also evaluate the different components
and parameters of our model as follows.

Linearity assumption. In Figure 13, we investigate our assumption
that the distances from snapshots to the their units exhibit a form
of linearity. We see in these examples with different types of mo-
tion that, after learning, the snapshot-to-unit distance exhibits the
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Fig. 13. Linearity for the snapshots of the units shown to the left of each
graph, where the distances to the start and end snapshots of the unit are
indicated along the x and y axis, respectively. We observe that the sum of
distances remains almost constant.
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Fig. 14. Average accuracy for motion prediction when using different motion
assumptions for defining the snapshot-to-unit distance.

Fig. 15. Three prediction results when certain semantic classes are missing
from the training data. For each pair, the query snapshot is shown to the
left and the predicted unit to the right.

assumed linearity. In general, we observe a similar result for the
other types of motion in our dataset.

Moreover, we compare our linearity assumption to other possible
motion assumptions. More specifically, we define snapshot-to-unit
distances that consider different k as follows:

DSU
k (s,uj ) =

1
2

((
DS
Wj

(s, s
j
1)
)k
+

(
DS
Wj

(s, s
j
m )
)k )
. (6)

Note that our previous definition in Eq. 2 is the special case when
k = 1. We show the comparison to these distances in Figure 14.
We see that the linearity assumption provides the best prediction
results, while our metric learning is able to improve the prediction
accuracy under all of the different motion assumptions.

Prediction for missing semantic classes. One question related to our
model is whether we can find a suitable motion for a snapshot even
if its exact semantic class is not present in the training set. To study
this scenario, we perform an experiment where we remove an entire
semantic class from the training data, and then verify what motion
is predicted for snapshots from this removed class. We present a
few example results in Figure 15. We see that, although we do not
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Fig. 16. Average accuracy for motion prediction in a cross-validation experi-
ment. We measure the accuracy when performing the metric learning with
different numbers of snapshots per unit.
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Fig. 17. Average accuracy for motion prediction when using training sets of
increasing size, where more units are included.

have the correct semantic class in the model, we map the snapshots
to classes where the motion is relevant and has similar parameters,
such as a rotating fan mapped to rotating wheels on a chair’s legs.

Number of training snapshots per unit.We perform an experiment to
investigate the effect that using different numbers of snapshotsm per
training unit has in the accuracy of motion prediction. To ensure that
the results for differentm are comparable, we always represent test
units with nine snapshots when computing the prediction accuracy.
The results are shown in Figure 16. We observe that the average
accuracy lies around 0.95 when using four or more snapshots per
training unit. Using more than four snapshots does not improve the
accuracy much more for the types of motion encountered in our
dataset.

Effect of training set size.We investigate the relation between the size
of the training set and the accuracy of motion prediction. For this
experiment, we perform cross-validation experiments as explained
above, except that we vary the number of units in the training set to
be a percentage of the entire dataset. We then evaluate the accuracy
of prediction on a fixed set of 10% of units randomly sampled from
the dataset and left out for testing. As observed in Figure 17, with
approximately 40% of our dataset (148 units), we obtain an accuracy
of 0.9 or higher for the selected random sample. Thus, we can obtain
a general model that covers a variety of part mobility types with
only 148 units stored in the model.

Motion transfer. We evaluate the quality of the motion transfer to
verify that, after correctly predicting the motion type for a snap-
shot, we can also successfully transfer the actual motion from the
retrieved unit. Figure 18 shows examples of motion transfer results.
We see how motions with different types of transformations and
axes can be transferred successfully to diverse objects. The sup-
plementary video accompanying this submission shows animated
examples of results.

Fig. 18. Examples of motion transfer obtained with our method after pre-
dicting the correct motion type for each snapshot. The transformation axes
(for rotation or translation) are denoted with the dashes lines, while the
motion is indicated by the arrows.

Fig. 19. Failure cases of motion transfer where the transformation axes
were flipped.

We evaluate the quality of the motion transfer by comparing the
transferred transformation axis to the ground-truth axis with two
measures. First, we measure the distance between the supporting
lines of each axis. However, to obtain a distance that takes the parts
into account, we consider only the portions of the lines that lie inside
the bounding box of the snapshot, in fact measuring the distance
between two line segments. This ensures that we get an accurate
distance even for co-planar lines that have a zero distance because of
intersection points far from the snapshot. Next, we also evaluate the
angle between the transferred and ground-truth axes. We evaluate
these two measures for all the snapshots of our dataset also in a
cross-validation scheme with 10 folds.

We find that the distance between axes is on average 0.03, with
a standard deviation of 0.08, where the shapes are normalized so
that the moving part fits into a bounding box that has a diagonal of
length 1. Thus, the distance is small as it corresponds to 3% of the
part’s bounding box diagonal, implying that the errors are more on
a finer scale. The angle between the axes is on average 8.14 degrees
with a deviation of 32.93. Further analysis reveals that the errors
for angles typically concentrate around 0 and 90 degrees, where
90 degrees is the case where the two possible horizontal axes are
flipped with each other. We found that 92% of the errors concentrate
around 0 degrees, with a deviation of 4.37, implying that the angle
is well approximated. The remaining 8% of the errors are flipped
axes. Figure 19 shows representative failure cases.

To obtain more insight into the performance of each step of the
motion transfer, we also pose the motion transfer as a classification
task and evaluate the accuracy of the transfer. First, we set parameter
difference thresholds of 5.0 and 0.3 for the transformation axis
direction and position, respectively. Then, given a snapshot, if the
distance between the transferred parameters and the ground-truth
parameters is below the given thresholds for the two parameters,
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Fig. 20. Failure cases for motion prediction on shape surfaces. Each example
is the query snapshot on the left and the predicted unit to the right. As can
be seen, a wrong type of motion is inferred.

and the transformation type is the same as in the ground-truth, then
we classify the motion transfer of the snapshot as correct. We then
compute the transfer accuracy for the candidate parameter sets and
for the final selected motion. To evaluate the candidate generation,
we verify whether any of the generated candidates is classified as
correct. To evaluate the final motion, we simply verify whether the
final candidate selected is correct.

The accuracy of the candidate generation step in isolation is 0.96.
Given that the initial accuracy for the prediction of motion type
using the S-D mapping is 0.95, the overall accuracy of candidate
generation is 0.91 = 0.95 ∗ 0.96. Moreover, the accuracy of the
final transfer after selecting one candidate is 0.94 in isolation, or
0.86 = 0.91 ∗ 0.94 when considering the previous steps. Thus, we
observe that, for each step, the accuracy of the prediction is relatively
high. However, the error accumulates providing a final performance
of 0.86.

Timing. The entire learning takes around 11 minutes on our dataset
of 368 mobility units with 4 snapshots per unit, where the clustering
for constraint subsampling takes 14s, and the metric learning takes
617s with both types of constraints.With only one type of constraint,
the learning takes around 69s for Type 1 constraints and 422s for
Type 2. When only constraints of Type 2 are used, parallelism can
be explored to reduce the timing to 70s. Mapping a query snapshot
to the most similar unit after learning is fast, taking only 1ms. The
timing for motion transfer depends on the number of candidate
sets of motion parameters we generate. It typically takes less than
30 seconds to transfer the motion from one unit to a snapshot
when 6 candidate sets are sampled. The motion transfer is highly
parallelizable and holds the potential for a significant speed-up.

7 APPLICATIONS

In this section, we explore different applications of the motion pre-
diction and our part mobility model.

Prediction from surface representations. In situations where a 3D
object is only available as a segmented surface model, we show that
we can still use our mobility model for motion prediction. For this
type of shape representations, the internal structures of the object
were not modeled, e.g., the internal structure of a drawer is missing
and we only have a patch with the outer front of the drawer. To
evaluate the performance of our method in this scenario, we learn
the model also with surface representations, and then evaluate the
prediction accuracy with the same cross-validation procedure as for
models with internal structures. In practice, we use the same dataset
as before for the learning, except that we only sample points from
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Fig. 21. Motion prediction for two scans of a toolbox. The unit predicted
for each pair of parts is indicated by a number.

(a) (b)

Fig. 22. Completing internal structures from surface representations. (a)
The input shape, the segmented surface, rendered with transparency to
show the empty space inside, and the final result with completed internal
parts. (b) Units predicted for the surface of the door and drawers.

the visible portions of the shapes to compute the descriptors, which
simulates the absence of internal geometry. We obtain an average
prediction accuracy of 0.94 when performing the learning with 4
snapshots per unit. We note that this is only 1% lower than the
average prediction on full shapes with internal structures. Figure 20
shows a few failure cases for the prediction. For example, a syringe
is predicted to have the motion of a roll, since the surface geometry
is similar, although the motion is a translation and not a rotation.

An extension to work with real scanned data with annotated seg-
mentations is also possible, which can be promising for robotic
applications. The added challenge would come from surface imper-
fections and incomplete data. Figure 21 shows an example of the
predicted motion for different units of a shape scanned in two dif-
ferent configurations. The scans were obtained with an Artec Space
Spider scanner, which directly provides a reconstructed triangle
mesh as output.

The prediction over surface shapes is potentially applicable to fill
in the missing geometry in these shapes. In Figure 22, we show a
few examples where we manually completed the missing geometry
and then automatically assigned motion to the new parts based on
the prediction. Automating such motion-driven shape completions
would be an interesting future work.

Object retrieval. Instead of detecting objects based on geometry only,
we can also consider what motions may be applied to the objects,
to search for objects that are most suitable for a specific task. Such
an application can be useful in a recognition setting, e.g., a robot
searches for the top objects that can satisfy a certain type of motion,
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Fig. 23. Precision and recall of snapshot retrieval with our model, which
can be potentially used for object detection. Note the high precision for
recall rates under 0.5.
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Fig. 24. Construction of the motion hierarchy for a shape. (a) We start with
a connectivity graph for the shape parts. (b) We predict the motion for every
pair of parts, determining which part is moving or reference in the pair. (c)
From the information of all pairs, we establish the root node and motion
hierarchy of the shape.

such as a handle rotation, which could indicate the location of a
door handle. We motivate the potential of our model for such an
application by evaluating the retrieval of snapshots according to a
given motion type. Figure 23 reports the recall and precision when
ranking all test snapshots in our dataset according to their distance
to a motion type, which is defined as the minimal snapshot-to-unit
distance to the training units with such motion type, also in a cross-
validation setting. We observe that the precision is quite high, over
0.95, for recalls under 0.5.

Motion hierarchies of shapes. The basic use of our model is to predict
the mobility of snapshots composed of pairs of parts. We can further
use the model to predict the motion of all parts in a shape, and
encode it in the form of a motion hierarchy that reveals the dynamic
properties of the shape. Given a segmented shape, we first create a
connectivity graph for the parts of the shape. Next, we predict the
motion for every possible edge in this graph, which corresponds
to two adjacent parts. Since we have no information on which is
the moving part and which one is the reference, we predict the
motion for both possibilities, and select the one with the lowest
snapshot-to-unit distance as the moving part. Finally, we select the
part that was never chosen as a moving part in a pair as the root of
the hierarchy, while edges of the hierarchy are derived by propagat-
ing the reference-to-moving part relations we just identified. The
process is illustrated in Figure 24. Note how the chosen units have
the same type of motion as the query part pairs.

In Figure 25, we present examples of the motion predicted for the
parts of selected shapes and their corresponding hierarchies. Note
how we are able to find the most relevant motion for the parts.
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Fig. 25. Examples of motion prediction for all the parts of different shapes,
and the corresponding motion hierarchies for the shapes. The query shapes
are shown in the middle of the various groups, and the units in the training
data closest to different pairs of parts are indicated by numbers. The colors
of nodes in the hierarchy indicate the correspondence to the shape parts.

8 DISCUSSION, LIMITATION, AND FUTURE WORK

We introduced a part mobility model and a supervised method
to learn it based on metric learning. We showed that the model
can be learned from few static snapshots of mobility units, not
requiring the use of dense snapshot sequences capturing the motion
of the units. Moreover, we showed with a detailed analysis that
the learning creates a meaningful model of part mobilities, which
can be used for various applications, including motion prediction,
motion-driven object detection, and motion hierarchy construction.
The key ingredient of the model is the S-D mapping from static
snapshots to dynamic mobility units, which can be used to predict
the motion of static pairs of parts appearing on one 3D snapshot of
an object.

Limitations. The approach we have developed represents a first
step in the direction of learning part mobilities of shapes. Thus, the
model has limitations arising from our assumptions that helped
simplify the learning scheme. First, we focus on mobility units
composed only of pairs of parts. Some objects in the real world may
possess units composed of three or more parts, such as those from
complex mechanical assemblies, which cannot be modeled with our
current approach. Moreover, we assume that each unit satisfies the
assumption of linearity, and thus bilinear part mobilities, such as a
ball-in-a-socket joint, or nonlinear part mobilities are not captured
by our model. In addition, when the model is extended to encode
the mobility of an entire shape in the form of a motion hierarchy,
we assume that the motion of each unit is independent from each
other. Thus, we do not capture the co-dependency of mobility units,
e.g., when opening an umbrella, the parts that compose the frame
of the umbrella can only move in a coordinated manner.

Another technical limitation of our learning pipeline is that we
assume that the input shapes are segmented. Thus, the use of the
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model in a fully-automatic system for motion prediction will depend
on the quality of automatic segmentation. In terms of the evaluation
and applications, we only showed preliminary results for motion
prediction on scans or surface shapes. We created training data by
sampling points on the visible surfaces of the models, to simulate
complete scans with the absence of internal geometry. It would
be ideal to use real scans for training, whose geometry and part
relationships can be quite different from clean data. However, to
collect such data, we must face typical difficulties with scan com-
pletion and registration. Especially for dynamic motion data, the
visible portions of the surfaces change during their motion, requir-
ing the acquisition and merging of multiple scans. More research is
required to obtain a fully reliable prediction in such scenarios. Also,
additional research is needed on the problem of automatically com-
pleting the missing geometry of shape surfaces, which we consider
an orthogonal problem to motion prediction.

Future work. Some of the limitations discussed above are interest-
ing directions for future work. For example, bilinear or nonlinear
part mobilities may be reduced to a composition of multiple lin-
ear mobilities, which would allow us to also model these types of
motion. Learning the dependency among mobility units in shapes
with complex mechanisms may be achieved with a learning-based
method that incorporates cues derived from the geometry of the
shapes [Mitra et al. 2010]. Recently, there have been many works
on learning CNNs for semantic segmentation of 3D models and
RGBD scans, which can potentially provide segmented input to our
method. The extraction of motion hierarchies for entire shapes may
also benefit from a method that combines part segmentation with
mobility prediction, so that parts are extracted based on their poten-
tial motion. We also believe that more applications that make use
of our snapshot-to-unit distance can be explored, especially applica-
tions that benefit from both types of constraints used in the learning
of the distance measure. Finally, we expect part mobility analysis
to be an essential task for VR/AR and robotics applications, where
an extension of our learning and processing framework applied to
real-time depth or RGBD scans can play a critical role.
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